

### **General Certificate of Education**

## **Mathematics 6360**

MPC3 Pure Core 3

# **Mark Scheme**

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

#### COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

|                         |                                         |                        | mm                                             |
|-------------------------|-----------------------------------------|------------------------|------------------------------------------------|
|                         |                                         | MPC                    | MMW, MYM3<br>3 - AQA GCE Mark Scheme 2009 June |
|                         |                                         |                        | diff                                           |
| Key to mark             | scheme and abbreviations used in marki  | ing                    |                                                |
| М                       | mark is for method                      |                        |                                                |
| m or dM                 | mark is dependent on one or more M man  | rks and is for me      | ethod                                          |
| А                       | mark is dependent on M or m marks and   | is for accuracy        |                                                |
| В                       | mark is independent of M or m marks and | d is for method a      | and accuracy                                   |
| E                       | mark is for explanation                 |                        |                                                |
| $\sqrt{100}$ or ft or F | follow through from previous            |                        |                                                |
|                         | incorrect result                        | MC                     | mis-copy                                       |
| CAO                     | correct answer only                     | MR                     | mis-read                                       |
| CSO                     | correct solution only                   | RA                     | required accuracy                              |
| AWFW                    | anything which falls within             | $\mathbf{F}\mathbf{W}$ | further work                                   |
| AWRT                    | anything which rounds to                | ISW                    | ignore subsequent work                         |
| ACF                     | any correct form                        | FIW                    | from incorrect work                            |
| AG                      | answer given                            | BOD                    | given benefit of doubt                         |
| SC                      | special case                            | WR                     | work replaced by candidate                     |
| OE                      | or equivalent                           | FB                     | formulae book                                  |
| A2,1                    | 2 or 1 (or 0) accuracy marks            | NOS                    | not on scheme                                  |
| –x EE                   | deduct <i>x</i> marks for each error    | G                      | graph                                          |
| NMS                     | no method shown                         | с                      | candidate                                      |
| PI                      | possibly implied                        | sf                     | significant figure(s)                          |
| SCA                     | substantially correct approach          | dp                     | decimal place(s)                               |

#### Key to mark scheme and abbreviations used in marking

#### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC3 - AQA GCE Mark Scheme 2009 June

| IPC3    |                                                                                                                 | -        |       | Comments                                                                            |
|---------|-----------------------------------------------------------------------------------------------------------------|----------|-------|-------------------------------------------------------------------------------------|
| Q       | Solution                                                                                                        | Marks    | Total | Comments                                                                            |
| 1(a)(i) | $f(x) = \frac{\cos x}{2x+1} - \frac{1}{2}$<br>$f(0) = \frac{1}{2};  f\left(\frac{\pi}{2}\right) = -\frac{1}{2}$ | M1       |       | OE<br>$x = 0$ LHS = 1, $x = \frac{\pi}{2}$ LHS = 0                                  |
|         | Change of sign $0 < \alpha < \frac{\pi}{2}$                                                                     | A1       | 2     | Either side of $\frac{1}{2}$ , $\therefore 0 < \alpha < \frac{\pi}{2}$              |
| (ii)    | $\frac{\cos x}{2x+1} = \frac{1}{2}$<br>2 cos x = 2x + 1<br>2 cos x - 1 = 2x } or, cos x = x + \frac{1}{2}       |          |       | Either line                                                                         |
|         | $x = \cos x - \frac{1}{2}$                                                                                      | B1       | 1     | AG; or $\cos x - \frac{1}{2} = x$<br>All correct with no errors                     |
| (iii)   | $x_1 = 0$<br>$x_2 = 0.5$                                                                                        | M1       | 2     | Attempt at iteration<br>(allow $x_2 = -0.5$ , $x_3 = 0.38$ , 0.4)                   |
| (b)(i)  | $\frac{dy}{dx} = \frac{(2x+1)(-\sin x) - \cos x \times 2}{(2x+1)^2}$                                            | A1<br>M1 | 2     | CAO<br>Attempt at quotient rule:<br>$\frac{\pm (2x+1)\sin x \pm 2\cos x}{(2x+1)^2}$ |
|         |                                                                                                                 | A1<br>A1 | 3     | Either term correct<br>All correct ISW                                              |
| (ii)    | $\begin{aligned} x &= 0\\ \frac{\mathrm{d}y}{\mathrm{d}x} &= -2 \end{aligned}$                                  | m1       |       | Correctly subst. $x = 0$ into their $\frac{dy}{dx}$                                 |
|         | $\therefore$ Gradient of normal = $\frac{1}{2}$                                                                 | A1       | 2     | CSO                                                                                 |
|         | Total                                                                                                           |          | 10    |                                                                                     |

MPC3 - AQA GCE Mark Scheme 2009 June

| $f^{-1}(x) = \frac{x^2 - 5}{2}$ A1 A1 A Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome $(y = )$ ft their (a), but must be x Condome (y = ) ft their (a), but must be x Condome (y = ) ft their (a), but must be x Condome (y = ) ft their (a), but must be x Condome (y = ) ft their (a), but must be x Condome (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) ft their (a), but must be x Condom (y = ) f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                | Solution                   | Marks | Total | $Comments$ For $\geq 0$ f(x) > 0                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------|-------|-------|-----------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{i} \mathbf{f}(x) \ge 0$               |                            | M1    |       | For $\geq 0$ , $f(x) > 0$                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                            | A1    | 2     | Correct; allow $y \ge 0$ , $f \ge 0$                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i) $y = \sqrt{2x}$                             | .5                         |       |       |                                                                 |
| (ii) $x \ge 0$<br>BIF 1 ft their (a), but must be x<br>BIF 1 ft their (a), but must be x<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $x = \sqrt{2y+x}$                              | 5                          | M1    |       | $x \Leftrightarrow y$                                           |
| (ii) $x \ge 0$<br>h(x) = fg(x)<br>$= \sqrt{2(\frac{1}{4x+1}) + 5}$<br>(ii) $\sqrt{2(\frac{1}{4x+1}) + 5} = 3$<br>$2(\frac{1}{4x+1}) + 5 = 9$<br>$\frac{1}{4x+1} = 2$<br>$4x + 1 = \frac{1}{2}$<br>$x = -\frac{1}{8}$ or equiv<br>(b) $3(\tan^2 x+1) = 5\tan x + 5$<br>$3(c)$ $(3\tan x+1)(\tan x-2) = 0$<br>$\tan^{x} = 2, -\frac{1}{3}$<br>$3(c)$ $(3\tan x+1)(\tan x-2) = 0$<br>$\tan^{x} = 2, -\frac{1}{3}$<br>x = 1, 11, 4.25, 2.82, 5.96<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>1<br>B1F<br>B1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x^2 = 2y +$                                   | 5                          | M1    |       | Attempt to isolate, squaring first                              |
| (ii) $x \ge 0$<br>B1F 1 ft their (a), but must be x<br><b>2(c)(i)</b> $h(x) = fg(x)$<br>$= \sqrt{2(\frac{1}{4x+1}) + 5}$ B1 1<br>(ii) $\sqrt{2(\frac{1}{4x+1}) + 5} = 3$<br>$2(\frac{1}{4x+1}) + 5 = 9$ A1 one correct step from (c)(i), s<br>$\frac{1}{4x+1} = 2$<br>$4x + 1 = \frac{1}{2}$ or equiv<br>A1 3 CSO<br><b>Total</b> 10<br><b>Sight of <math>\pm 0.32</math> or 18.43</b><br>x = 2.82, 5.96 A1 3 a correct answer A1<br>A1 3 CSO<br><b>Total</b> 10<br><b>Sight of <math>\pm 0.32</math> or 18.43</b><br>x = 2.82, 5.96 A1 3 a correct answer A1<br>A1 3 CSO<br><b>Total</b> 10<br><b>Sight of <math>\pm 0.32</math> or 18.43<br/>x = 2.82, 5.96 A1 A1 3 a correct answer A1<br/>A1 3 CSO<br/><b>Sight of <math>\pm 0.32</math> or 18.43<br/>(b)</b> <math>3(\tan^2 x + 1) = 5\tan x + 5</math><br/><math>3\tan^2 x - 5\tan x - 2 = 0</math> B1 1 AG<br/><b>3(c)</b> <math>(3\tan x + 1)(\tan x - 2) = 0</math> <math>\tan x = 2, -\frac{1}{3}</math> A1<br/>x = 1.11, 4.25, 2.82, 5.96 AWRT B1 <b>3</b> correct [SC <math>x = 1.11, 4.25</math></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f^{-1}(x) =$                                  | $c^2 - 5$                  | A 1   | 2     |                                                                 |
| 2(c)(i) $h(x) = fg(x)$<br>$= \sqrt{2(\frac{1}{4x+1}) + 5}$ B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 (11)                                         | 2                          | AI    | 3     | condone $(y = )$                                                |
| $ = \sqrt{2\left(\frac{1}{4x+1}\right) + 5} $ B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i) $x \ge 0$                                   |                            | B1F   | 1     | ft their (a), but <b>must</b> be x                              |
| $ = \sqrt{2\left(\frac{1}{4x+1}\right) + 5} $ B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                | ( )                        |       |       |                                                                 |
| (ii) $\sqrt{2\left(\frac{1}{4x+1}\right)+5} = 3$<br>$2\left(\frac{1}{4x+1}\right)+5 = 9$<br>$\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ or equiv<br>$x = -\frac{1}{8}$ or equiv<br>$x = -\frac{1}{8}$ or equiv<br>x = 2.82, 5.96<br>(b) $3(\tan^2 x+1) = 5\tan x+5$<br>$3\tan^2 x - 5\tan x - 2 = 0$<br>$3(a) (3\tan x+1)(\tan x-2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br>$3(b) (3\tan x+1)(\tan x-2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br>$4 \tan x = 1.11, 4.25, 2.82, 5.96$<br>$4 \tan x = 1.11, 4.25, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25, 1.25, 1.2$                                                                                                                                                                                                                                                                                                                                                     |                                                |                            |       |       |                                                                 |
| (ii) $\sqrt{2\left(\frac{1}{4x+1}\right)+5} = 3$<br>$2\left(\frac{1}{4x+1}\right)+5 = 9$<br>$\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ or equiv<br>$x = -\frac{1}{8}$ or equiv<br>$x = -\frac{1}{8}$ or equiv<br>x = 2.82, 5.96<br>(b) $3(\tan^2 x+1) = 5\tan x+5$<br>$3\tan^2 x-5\tan x-2 = 0$<br>$3(x) = 3(\tan x+1)(\tan x-2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br>x = 1.11, 4.25, 2.82, 5.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= \sqrt{2} \left( \frac{1}{\sqrt{2}} \right)$ | (-1) + 5                   | B1    | 1     |                                                                 |
| $\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ or equiv<br>$x = -\frac{1}{8} \text{ or equiv}$ A1<br>$3(a) \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ M1<br>x = 2.82, 5.96 A1<br>$3(\tan^{2} x+1) = 5\tan x+5$<br>$3\tan^{2} x-5\tan x-2 = 0$ B1<br>$3(a) \tan x = 2, -\frac{1}{3}$ A1<br>x = 1.11, 4.25, 2.82, 5.96 AWRT B1<br>x = 1.11, 4.25, 2.82, 5.96 AWRT B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\bigvee (4x)$                                 | +1)                        |       |       |                                                                 |
| $\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ $x = -\frac{1}{8} \text{ or equiv}$ $\frac{1}{16x+4=2}$ $x = -\frac{1}{8} \text{ or equiv}$ $\frac{10}{41} = \frac{10}{3}$ $\frac{10}{3(a)} \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ $\frac{10}{3(a)} \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ $\frac{10}{41} = \frac{10}{3}$ $x = 2.82, 5.96$ $\frac{10}{41} = \frac{10}{3} = -1.15 \text{ mm}$ $\frac{10}{41} = \frac{10}{3} \text{ correct}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x + 5 \text{ mm}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x + 5 \text{ mm}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x - 2 = 0$ $\frac{11}{3} = 1.11 \text{ mm}$ $\frac{11}{425} = 2.82, 5.96 \text{ mm}$ $\frac{11}{41} = \frac{10}{3} \text{ correct}$ $\frac{10}{3} \text{ correct}$ $10$ | $\mathbf{i}$                                   |                            |       |       |                                                                 |
| $\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ $x = -\frac{1}{8} \text{ or equiv}$ $\frac{1}{16x+4=2}$ $x = -\frac{1}{8} \text{ or equiv}$ $\frac{10}{41} = \frac{10}{3}$ $\frac{10}{3(a)} \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ $\frac{10}{3(a)} \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ $\frac{10}{41} = \frac{10}{3}$ $x = 2.82, 5.96$ $\frac{10}{41} = \frac{10}{3} = -1.15 \text{ mm}$ $\frac{10}{41} = \frac{10}{3} \text{ correct}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x + 5 \text{ mm}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x + 5 \text{ mm}$ $\frac{10}{3} (\tan^{2} x + 1) = 5 \tan x - 2 = 0$ $\frac{11}{3} = 1.11 \text{ mm}$ $\frac{11}{425} = 2.82, 5.96 \text{ mm}$ $\frac{11}{41} = \frac{10}{3} \text{ correct}$ $\frac{10}{3} \text{ correct}$ $10$ | $\sqrt{2}\left(\frac{1}{4x+1}\right)$          | $\left[ - \right] + 5 = 3$ |       |       |                                                                 |
| $\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$ or equiv<br>$x = -\frac{1}{8} \text{ or equiv}$ A1<br>$3(a) \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ M1<br>x = 2.82, 5.96 A1<br>$3(a) \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ A1<br>x = 2.82, 5.96 A1<br>$3(a) \tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ A1<br>41<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A3<br>A1<br>A5<br>A1<br>A6<br>A1<br>A6<br>A1<br>A6<br>A1<br>A1<br>A6<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A3<br>A1<br>A1<br>A1<br>A1<br>A2<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A2<br>A3<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A2<br>A2<br>A2<br>A2<br>A3<br>A1<br>A1<br>A2<br>A1<br>A1<br>A2<br>A1<br>A2<br>A2<br>A2<br>A2<br>A3<br>A2<br>A3<br>A1<br>A2<br>A3<br>A3<br>A3<br>A3<br>A2<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A3<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5<br>A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                            |       |       |                                                                 |
| $\frac{1}{4x+1} = 2$<br>$4x+1 = \frac{1}{2}$<br>$x = -\frac{1}{8} \text{ or equiv}$<br>$\frac{1}{4x+1} = \frac{1}{2}$<br>$x = -\frac{1}{8} \text{ or equiv}$<br>$\frac{10}{41}$<br>$\frac{10}{3(a)}$<br>$\frac{10}{41} = -0.32$<br>$\frac{10}{3(a)}$<br>x = 2.82, 5.96<br>$\frac{1}{3} = -0.32$<br>$\frac{1}{3} = -0.32$<br>$\frac$                                   | $2\left(\frac{1}{4x+1}\right)$                 | +5 = 9                     | MI    |       | one correct step from (c)(1), squaring                          |
| $x = -\frac{1}{8}$ or equiv       A1       3       CSO $3(a)$ $\tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ M1       Sight of $\pm 0.32$ or 18.43 $x = 2.82, 5.96$ A1       A1       3       a correct answer       A1 $x = 2.82, 5.96$ A1       A1       3       a correct answer       A1 $b = 3(\tan^2 x + 1) = 5\tan x + 5$ B1       1       AG       AG $3(c)$ $(3\tan x + 1)(\tan x - 2) = 0$ M1       A1       A1       A1       A2 $x = 1.11, 4.25, 2.82, 5.96$ AWRT       B1       3       correct       [SC x = 1.11, 4.25, 2.82, 5.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 =                                            | 2                          |       |       |                                                                 |
| $x = -\frac{1}{8}$ or equiv       A1       3       CSO $3(a)$ $\tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ M1       Sight of $\pm 0.32$ or 18.43 $x = 2.82, 5.96$ A1       A1       3       a correct answer       A1 $x = 2.82, 5.96$ A1       A1       3       a correct answer       A1 $b = 3(\tan^2 x + 1) = 5\tan x + 5$ B1       1       AG       AG $3(c)$ $(3\tan x + 1)(\tan x - 2) = 0$ M1       A1       A1       A1       A2 $x = 1.11, 4.25, 2.82, 5.96$ AWRT       B1       3       correct       [SC x = 1.11, 4.25, 2.82, 5.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4x + 1                                         | either                     | A1    |       |                                                                 |
| Total       Image of the second state in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4x + 1 = -                                     | or $16x + 4 = 2$           |       |       |                                                                 |
| Total       Image of the second state in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $r = -\frac{1}{2}$                             | or equiv                   |       |       |                                                                 |
| 3(a) $\tan^{-1}\left(-\frac{1}{3}\right) = -0.32$ M1       Sight of $\pm 0.32$ or 18.43 $x = 2.82, 5.96$ A1       A1       3       a correct answer       A1         (b) $3(\tan^2 x + 1) = 5\tan x + 5$ B1       3       Sight of $\pm 0.32$ or 18.43         (c) $3(\tan^2 x - 5\tan x - 2 = 0$ B1       1       AG         3(c) $(3\tan x + 1)(\tan x - 2) = 0$ M1       A1       A1 $x = 1.11, 4.25, 2.82, 5.96$ AWRT       B1       3 correct       [SC x = 1.11, 4.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                              |                            |       |       | CSO                                                             |
| $x = 2.82, 5.96$ A1<br>A1<br>A13a correct answer<br>-1 for any extra in range, igr<br>answers not in range.<br>[SC 161.57, 341.57 AWRT<br>(max 2/3)](b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3 \tan^2 x - 5 \tan x - 2 = 0$ B11AG <b>3(c)</b> $(3\tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>$x = 1.11, 4.25, 2.82, 5.96$ M1<br>AWRTA1<br>B13 correct[SC x = 1.11, 4.55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                            |       | 10    |                                                                 |
| $x = 2.82, 5.96$ A1<br>A1<br>A13a correct answer<br>-1 for any extra in range, igr<br>answers not in range.<br>[SC 161.57, 341.57 AWRT<br>(max 2/3)](b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3 \tan^2 x - 5 \tan x - 2 = 0$ B11AG <b>3(c)</b> $(3\tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>$x = 1.11, 4.25, 2.82, 5.96$ M1<br>AVRTA1<br>B13 correct[SC x = 1.11, 4.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1) $\tan^{-1}\left(-\frac{1}{3}\right)$        | =-0.32                     | M1    |       | Sight of $\pm 0.32$ or 18.43                                    |
| (b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3(\tan^2 x + 1) = 5 \tan x - 2 = 0$<br>$3(c)$ $(3 \tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1<br>A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                            | Δ 1   |       | a correct answer AWRT                                           |
| (b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3 \tan^2 x - 5 \tan x - 2 = 0$<br><b>B</b> 1<br><b>1</b><br><b>A</b> G<br><b>3(c)</b> $(3 \tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br><b>A</b> WRT<br><b>B</b> 1<br><b>C</b><br><b>B</b> 1<br><b>C</b><br><b>B</b> 1<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x = 2.82,                                      | 5.96                       |       | 3     | -1 for any extra in range, ignore extra                         |
| (b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3 \tan^2 x - 5 \tan x - 2 = 0$<br><b>B</b> 1<br><b>1</b><br><b>A</b> G<br><b>3(c)</b> $(3 \tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br><b>A</b> WRT<br><b>B</b> 1<br><b>1</b><br><b>A</b> G<br><b>Attempt at factorisation/form</b><br><b>A</b> 1<br><b>B</b> 1<br><b>3 correct</b> [SC $x = 1.11, 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                            |       |       |                                                                 |
| (b) $3(\tan^2 x + 1) = 5 \tan x + 5$<br>$3 \tan^2 x - 5 \tan x - 2 = 0$<br>B1 1 AG<br>AG<br>A(c) $(3 \tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96 AWRT B1 3 correct [SC $x = 1.11, 4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                            |       |       | -                                                               |
| 3 $\tan^2 x - 5 \tan x - 2 = 0$<br>3 $\tan^2 x - 5 \tan x - 2 = 0$<br>3 $\tan^2 x - 5 \tan x - 2 = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96<br>AWRT<br>B1<br>AG<br>Attempt at factorisation/form<br>A1<br>B1<br>B1<br>B1<br>B1<br>AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $3(\tan^2 x)$                                  | $(1) = 5 \tan x + 5$       |       |       |                                                                 |
| 3(c) $(3 \tan x + 1)(\tan x - 2) = 0$<br>$\tan x = 2, -\frac{1}{3}$<br>x = 1.11, 4.25, 2.82, 5.96 AWRT B1<br>Attempt at factorisation/form<br>A1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                              | ,                          | דם    | 1     | AG                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J tuil A                                       |                            | ВІ    | 1     | AU                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) $(3\tan x +$                                | 1) $(\tan x - 2) = 0$      | M1    |       | Attempt at factorisation/formula                                |
| x = 1.11, 4.25, 2.82, 5.96 AWRT B1 3 correct [SC $x = 1.11, 4.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                            |       |       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | 5                          |       |       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x = 1.11,                                      | 4.25, 2.82, 5.96 AWI       | RT B1 |       | 3 correct [SC $x = 1.11, 4.25$ + their<br>two answers from (a)] |
| B1 4 4 correct, no extras in range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                            | B1    | 4     |                                                                 |
| [SC 161.57, 341.57, 63.43, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                            |       |       | [SC 161.57, 341.57, 63.43, 243.43                               |
| Total         AWRT B1 (max 3/4)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                | n                          | Fotol | 0     | AWRT B1 (max 3/4)]                                              |

Taths

| PC3 (cont<br>Q | Solution                                                                                                                       | Marks           | Total | Comments Co                                                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 4(a)           | y<br>50                                                                                                                        | M1              |       | Modulus graph, 3 section, condone shape inside + outside $\pm \sqrt{50}$                                                |
|                | $(-\sqrt{50}) \qquad O \qquad (\sqrt{50}) \qquad x$                                                                            | A1<br>A1        | 3     | Cusps + curvature outside $\pm \sqrt{50}$<br>Value of y and shape inside $(\pm \sqrt{50})$                              |
| (b)            |                                                                                                                                |                 |       |                                                                                                                         |
|                | $ 50 - x^{2}  = 14$<br>$50 - x^{2} = 14$ $x^{2} = 36$<br>$50 - x^{2} = -14$ $x^{2} = 64$                                       | M1              |       | Either                                                                                                                  |
|                | $x = \pm 6, \pm 8$                                                                                                             | A1<br>A1        | 3     | 2 correct, from correct working<br>All 4 correct, from correct working                                                  |
| (c)            | -6 < x < 6<br>x > 8, x < -8                                                                                                    | B1<br>B1        | 2     |                                                                                                                         |
| (d)            | Reflect in <i>x</i> -axis<br>Translate $\begin{bmatrix} 0\\50 \end{bmatrix}$                                                   | M1,A1<br>E1, B1 | 4     | or $\begin{cases} \text{Reflect in } y = a \\ \text{Translate} \begin{bmatrix} 0 \\ 50 - 2a \end{bmatrix} \end{cases}$  |
|                |                                                                                                                                |                 |       | or $\begin{cases} Translate \begin{bmatrix} 0\\ -50 \end{bmatrix} \\ Reflect in x - axis \end{cases}$                   |
|                |                                                                                                                                |                 |       | or $\begin{cases} \text{Translate} \begin{bmatrix} 0\\2a-50 \end{bmatrix} \\ \text{Reflect in } y = a \end{cases}$      |
|                | Reflect in $y = 25$ scores 4/4                                                                                                 |                 |       |                                                                                                                         |
|                | Total                                                                                                                          |                 | 12    |                                                                                                                         |
| 5(a)           | $2\ln x = 5$ $\ln x = \frac{5}{2}  x = e^{\frac{5}{2}}$                                                                        | B1              | 1     |                                                                                                                         |
| (b)            | $2\ln x + \frac{15}{1} = 11$                                                                                                   |                 |       |                                                                                                                         |
|                | $2(\ln x)^2 - 11\ln x + 15 = 0$                                                                                                | M1              |       | Forming quadratic equation in $\ln x$ , condone poor notation                                                           |
|                | $(2\ln x - 5)(\ln x - 3) = 0$                                                                                                  | m1              |       | Attempt at factorisation/formula                                                                                        |
|                | $\ln x$<br>$2(\ln x)^{2} - 11\ln x + 15 = 0$<br>$(2\ln x - 5)(\ln x - 3) = 0$<br>$\ln x = \frac{5}{2}, 3$ condone $2\ln x = 5$ | A1              |       |                                                                                                                         |
|                | $x = e^{\frac{5}{2}}, e^{3}$                                                                                                   | A1,A1           | 5     | [SC for substituting $x = e^{\frac{5}{2}}$ or equivalent<br>into equation and verifying B1 $\left(\frac{1}{5}\right)$ ] |
|                | Total                                                                                                                          |                 | 6     |                                                                                                                         |

| MPC3 (cont | .)                                                                                           |       |       | -1040                                                                                                                                   |
|------------|----------------------------------------------------------------------------------------------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Q          | Solution                                                                                     | Marks | Total | Comments                                                                                                                                |
| 6(a)       | $V = \pi \int x^2  \mathrm{d} y$                                                             | B1    |       | PI                                                                                                                                      |
|            | $V = \pi \int x^2  dy$ $V = \frac{(\pi)}{4} \int (100 - y^2)  dy$                            | M1    |       | $k \int (100 - y^2) dy$ may be recovered<br>Allow $\int (\text{their } x)^2 dy$ , expanded                                              |
|            | $= \frac{(\pi)}{4} \left[ 100y - \frac{y^3}{3} \right]_{(0)}^{(10)}$                         | A1    |       |                                                                                                                                         |
|            | $=\frac{(\pi)}{4}\left[\frac{2000}{3}\right]$                                                | m1    |       | For F(10) – F(0)                                                                                                                        |
|            | $=\frac{500\pi}{3}$                                                                          | A1    | 5     | OE CSO                                                                                                                                  |
|            |                                                                                              |       |       | SC: if rotated about x-axis<br>$V = \pi \left[ 100x - \frac{4x^3}{3} \right]_0^5 \text{ M1}$ $= \frac{1000}{3} \pi \text{ A1 max } 2/5$ |
| (b)        | x y                                                                                          |       |       |                                                                                                                                         |
|            | 0.5 9.95(0)<br>1.5 9.539                                                                     | B1    |       | Correct <i>x</i>                                                                                                                        |
|            | 2.5 8.66(0) or better                                                                        | M1    |       | $4 + \operatorname{correct} y$ to $2 \operatorname{sf}$                                                                                 |
|            | 3.5     7.141       4.5     4.359                                                            | A1    |       | All y correct                                                                                                                           |
|            | $A = 1 \times \sum y = 39.6$                                                                 | A1    | 4     | $(39.6 \text{ scores } \frac{4}{4})$                                                                                                    |
| 6(c)(i)    | $A = 1 \times \sum y = 39.6$ $\frac{dy}{dx} = \frac{1}{2} (100 - 4x^2)^{-\frac{1}{2}} (-8x)$ | M1    |       | Chain rule $()^{-\frac{1}{2}} \times f(x)$ ; allow $f(x) = k$                                                                           |
|            |                                                                                              |       |       | $f(x) = \frac{1}{2}(-8x) = -4x$                                                                                                         |
|            | $x = 3 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -12 (100 - 36)^{-\frac{1}{2}}$      | A1    |       |                                                                                                                                         |
|            | $=-\frac{3}{2}$ or equivalent                                                                | A1    | 3     | CSO                                                                                                                                     |
| (ii)       | $= -\frac{3}{2} \text{ or equivalent}$ $y - 8 = -\frac{3}{2}(x - 3)$                         | M1    |       | $y - 8 = \left(\text{their}\frac{\mathrm{d}y}{\mathrm{d}x}\right)(x - 3)$                                                               |
|            |                                                                                              |       |       | or $y = \left( \text{their } \frac{dy}{dx} \right) x + c$ and subst. (3,8) to<br>find $c$                                               |
|            | (2y-16 = -3x+9)<br>2y+3x = 25                                                                |       |       | AG; all correct with no slips, full marks                                                                                               |
|            | 2y + 3x = 25                                                                                 | A1    | 2     | in part (i)                                                                                                                             |

MPC3 - AQA GCE Mark Scheme 2009 June

| MPC3 |                                                                                                                                   |              |       | - Ud                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------------------------------------------------------------------|
| Q    | Solution                                                                                                                          | Marks        | Total | Comments                                                         |
| 6(d) | $x = 0$ $y = \frac{25}{2}$ or equivalent                                                                                          | B1           |       |                                                                  |
|      | $y = 0 \qquad x = \frac{25}{3}$                                                                                                   | B1           |       | OE                                                               |
|      | Area of $\Delta = \frac{1}{2} \times \frac{25}{2} \times \frac{25}{3}$                                                            | M1           |       | for $\frac{1}{2}$ (their y)×(their x) or $\frac{1}{2} ab \sin C$ |
|      | Area = Area $\Delta$ – (b)<br>Required area = 12.5 AWRT                                                                           | m1<br>A1     | 5     | PI $\Delta > (b)$<br>Condone 12.4 AWRT                           |
| (d)  | Alternative                                                                                                                       |              |       |                                                                  |
|      | Area $\Delta = \int_{0}^{\frac{25}{3}} \frac{1}{2} (25 - 3x) (dx)$                                                                | (B1)<br>(B1) |       |                                                                  |
|      | $= \frac{1}{2} \left[ 25x - \frac{3x^2}{2} \right]_0^{\frac{25}{3}}$ $= \frac{1}{2} \left[ \frac{625}{3} - \frac{625}{6} \right]$ | (M1)         |       | For integration and $f(\frac{25}{3}) - f(0)$                     |
|      | $=\frac{625}{12}$                                                                                                                 |              |       |                                                                  |
|      | Total                                                                                                                             |              | 19    |                                                                  |
| 7(a) | $\int (t-1) \ln t  \mathrm{d}t$                                                                                                   |              |       |                                                                  |
|      | $\int (t-1) \ln t  dt$ $u = \ln t  \frac{dv}{dt} = t-1$ $\frac{du}{dt} = \frac{1}{t}  v = \frac{t^2}{2} - t$                      | M1           |       | Differentiate + integrate, correct direction                     |
|      |                                                                                                                                   | A1           |       | All correct                                                      |
|      | $\int = \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t^2}{2} - t\right) \times \frac{1}{t} (dt)$                       |              |       |                                                                  |
|      | $= \left(\frac{t^2}{2} - t\right) \ln t - \int \left(\frac{t}{2} - 1\right) (dt)$                                                 | A1           |       | Condone missing brackets                                         |
|      | $=\left(\frac{t^2}{2}-t\right)\ln t - \frac{t^2}{4} + t(+c)$                                                                      | A1           | 4     | САО                                                              |

MPC3 - AQA GCE Mark Scheme 2009 June Markscheme 2009 June

| PC3 (cont |                                                                                                                 | [     |       | -Uq                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------|
| Q         | Solution                                                                                                        | Marks | Total | Comments                                               |
| 7(a)      | Alternative $\int (t-1) \ln t$                                                                                  | (M1)  |       | $u = \ln t  v' = (t-1)$                                |
|           |                                                                                                                 | (A1)  |       | $u' = \frac{1}{t}$ $v = \frac{(t-1)^2}{2}$             |
|           | $\int = \frac{(t-1)^2}{2} \ln t - \int \frac{(t-1)^2}{t} \frac{1}{t} dt$                                        |       |       |                                                        |
|           | $\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int \frac{t^2 - 2t + 1}{t} dt$                                          |       |       |                                                        |
|           | $\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \int t - 2 + \frac{1}{t} dt$                                             | (A1)  |       |                                                        |
|           | $\frac{(t-1)^2}{2} \ln t - \frac{1}{2} \left[ \frac{t^2}{2} - 2t + \ln t \right]$                               | (A1)  |       |                                                        |
|           | $=\frac{t^2}{2}\ln t - t\ln t + \frac{1}{2}\ln t - \frac{t^2}{4} + t - \frac{1}{2}\ln t$                        |       |       |                                                        |
|           | $= \left(\frac{t^2}{2} - t\right) \ln t - \frac{1}{4}t^2 + t + c$                                               |       | (4)   |                                                        |
| (b)       | t = 2x + 1                                                                                                      |       |       |                                                        |
|           | dt = 2 dx (RHS)                                                                                                 | M1    |       | $\frac{\mathrm{d}t}{\mathrm{d}x} = 2 \ (\mathrm{LHS})$ |
|           | 2x = t - 1,                                                                                                     | m1    |       | OE                                                     |
|           | 2x = t - 1,<br>$\int = \int \Sigma (t - 1) \ln t \frac{dt}{\Sigma}$                                             | A1    | 3     | AG                                                     |
| (c)       | $[x]_{0}^{1} = [t]_{1}^{3}$                                                                                     | M1    |       | Limit becoming 3                                       |
|           | $\int = \left[ \left( \frac{t^2}{2} - t \right) \ln t - \frac{t^2}{4} + t \right]_{1}^{3}$                      |       |       |                                                        |
|           | $= \left[ \left(\frac{9}{2} - 3\right) \ln 3 - \frac{9}{4} + 3 \right] - \left[ 0 - \frac{1}{4} + 1 \right]$    | m1    |       | Correctly sub. 1,3 into their (a)                      |
|           | $=\frac{3}{2}\ln 3$                                                                                             | A1    | 3     | CSO                                                    |
|           | or $\int ((z_1, z_2^2) + (z_2, z_2^2)^2 dz^2$                                                                   |       |       |                                                        |
|           | $\int = \left[ \left( \frac{(2x+1)^2}{2} - (2x+1) \right) \ln (2x+1) - \frac{(2x+1)^2}{4} + (2x+1) \right]_0^1$ | (M1)  |       | Condone 1 slip                                         |
|           | $= \left( \left(\frac{9}{2} - 3\right) \ln 3 - \frac{9}{4} + 3 \right) - \left(0 - \frac{1}{4} + 1\right)$      | (m1)  |       | Correctly sub. 0,1                                     |
|           | $=\frac{3}{2}\ln 3$                                                                                             | (A1)  | (3)   | CSO                                                    |
|           | Total                                                                                                           |       | 10    |                                                        |
|           | TOTAL                                                                                                           |       | 75    |                                                        |

MPC3 - AQA GCE Mark Scheme 2009 June Mains Cloud Com